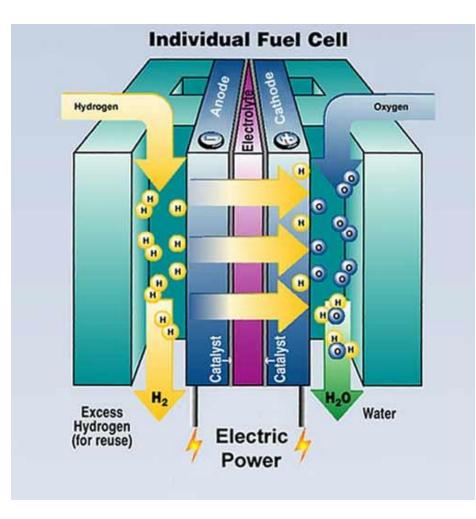
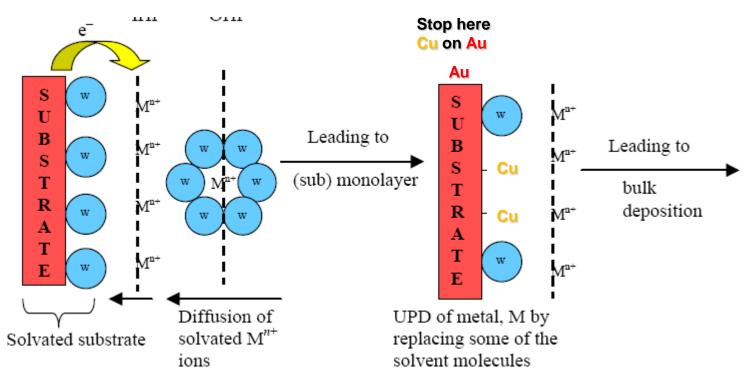
Underpotential deposition and galvanic replacement for fuel cell catalysis


Outline

- Background
- Fuel Cell
- Underpotential Deposition (UPD) (theory)
- Galvanic Replacement (theory)
- UPD (research)
- Fuel cell improvements by UPD and GR
- Where are we now? Future work

Background of the Fuel Cell

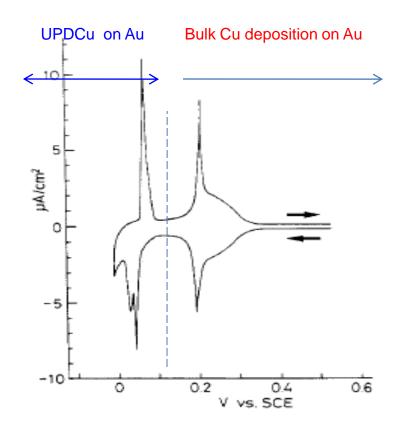
- Fuel cell reaction discovered over 150 years ago . Chemical energy is stored in a fuel and continually supplied to the device and chemically consumed.
- In the case of PEM fuel cells, hydrogen and oxygen out of the air are reacted producing electricity, water, and heat.
- Other types include
 - Alkali with pure H2 and O2 used in the Apollo mission
 - Molten Carbonate
 - Solid oxide
- Not limited by the Carnot efficiency
- O₂ + 2H₂ -> 2H₂O(I) Ideal hydrogen oxidation 1.2 V
 - Number of cells in stack determines voltage
 - Surface area of cell determines current


Solid polymer electrolyte membrane Fuel Cell

Fuel Cell Catalysts

- Mono/sub-mono layers of Pt on carbon support
 Both at the Anode and Cathode
- Lower cost catalyst particles by the galvanic replacement of a monolayer of platinum on surface of a less noble metal, such as, Ag, Cu, Au, etc.
 - e.g., copper can be placed on low cost thin nanoporous
 Au leaf (Ehlebacher, Johns Hopkins) substrate by UPD

UPD (UnderPotential Deposition)



The deposition of a metal monolayer on a dissimilar metal substrate at a potential anodic (more positive) of the Nernst potential, Er, for bulk deposition where $E^r = E^0 - (RT/zF) \ln[1/(aMe^{z+})]$

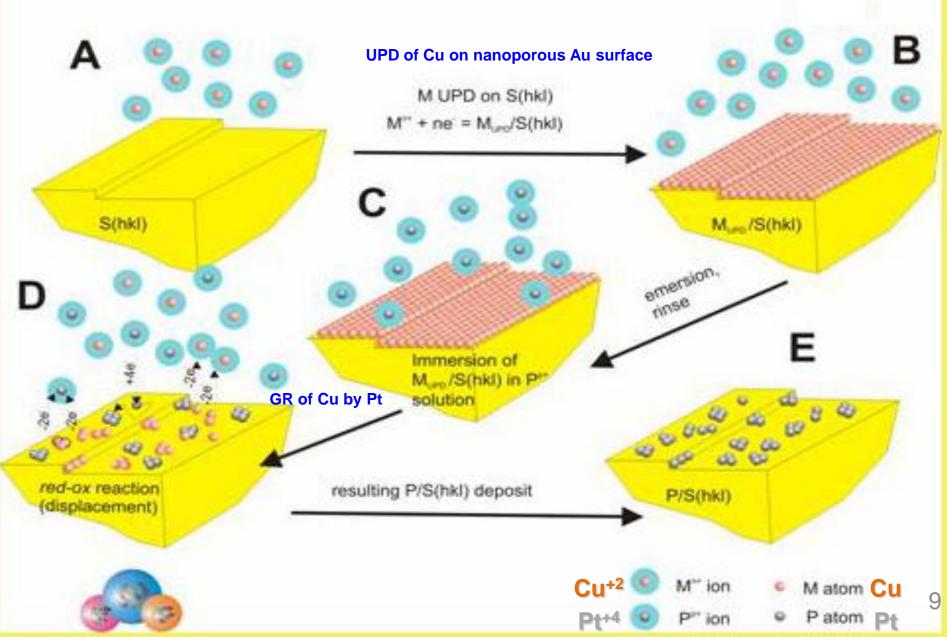
•Adatom has higher affinity for substrate than like atoms

- •UPD of Cu on Au occurs at 0 to 0.46 V (-0.24 to +0.22 vs SCE)
- bulk deposition occurs at +0.24 V
- E° being +0.34 V vs Standard Hydrogen Electrode

Cyclic voltammetry

UPD first occurs at steps, grain boundaries and other high energy surfaces. Usually use the (111) crystal orientation for the substrate

Galvanic replacement

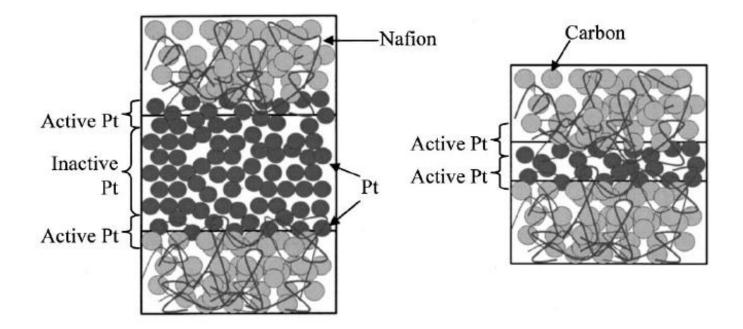

Spontaneous redox process

- Cu atoms are oxidized by the more noble Pt cation which is reduced there by replacing the Cu atom on the surface
 - E ^{Pt+4/Pt} > E ^{Cu+2/Cu}
 - Therefore $\Delta G = -nFE$ is favorable
 - Only supports ½ mono layer of Pt (Pt4+, Cu2+)
- Galvanic series (most noble to least)
 - Palladium
 - Platinum
 - Gold
 - Copper
 - Lead
 - Zinc

- Substrate must be more noble than replacement metal

UPD and Galvanic Replacement

http://www2.egr.uh.edu/~ecnfg/Dr%20Brankovic.htm



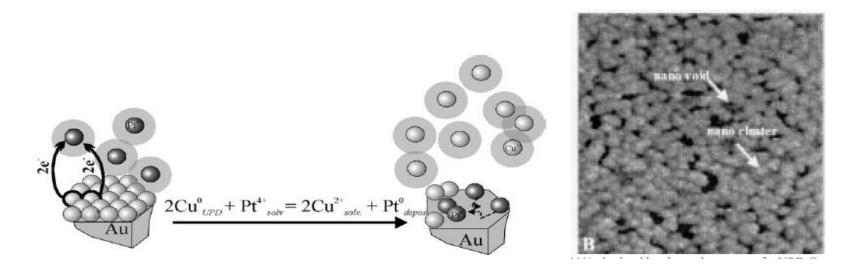
Research on Current Difficulties with Fuel Cells \$\$\$

- Cost too much **\$\$\$**...
- need to
 - Reduce Pt loading
 - Increase Pt surface area available for reaction
 - Need more robust catalysts
- But catalysts become clogged with impurities
 - Reduction of the O_2 on Pt-catalyzed cathode is easily made inefficient
 - Carbon Monoxide from fuel reforming, sulfur and phosphorus compounds from electrolyte reduce performance – use more fuel \$\$\$
 - Cathode slow oxygen reduction reaction (ORR) requires more Pt than anode side running on *pure* hydrogen \$\$\$
 - Anode slow hydrogen oxidation kinetics (HOR) on anode due to CO poisoning from fuel reforming – so anode now requires more Pt than cathode side \$\$\$

Cost Consideration/Efficiency

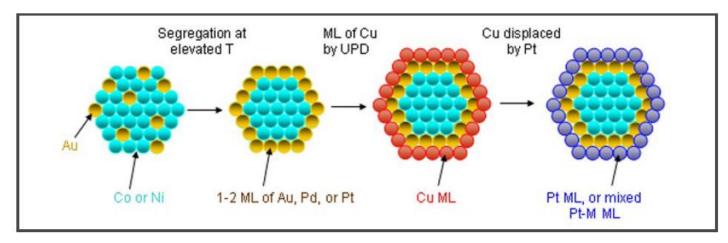
• Amount of Pt used will only be surface active

Haug, A. et. al. Increasing Proton Exchange Membrane Fuel Cell Catalyst.Effectiveness Through Sputter Deposition. *Journal of* The Electrochemical Society, 149 3 A280-A287 A284 2002


Thinner gas diffusion layers and smaller catalysts on smaller supports

Reason to Go Smaller

- More exposed catalyst so more cost efficient triple phase boundary
 - (electrolyte, electrode, catalyst)
- Increased surface area more reactive area
- Benefits from nanoparticle catalysts
 - higher activity from strain
 - a greater percent of noble atoms are on the surface.
 - Bulk atoms 12 neighbors
 - Surface atoms 6 to 9 neighbors


UPD/GR Submonolayer Formation

- Replacement (irreversible redox of Cu UPD on Au(111))
- Pt(4+) submonolayer
- Pd(2+) monolayer
- Ag(1+) bilayer
- No preferential deposition on steps or defect sites like other deposition methods.

Brankovic, S et al. Metal Monolayer Deposition by replacement of metal adlayers on electrode surfaces. Surface Science 474 (2001) L173-179.

Tailored Platinum Monolayer on Non-Noble Metal-Noble Metal Core-shell Nanoparticles Electrocatalysts for O2 Reduction

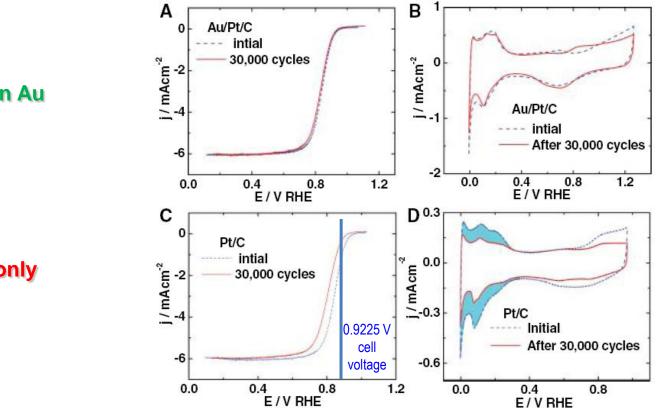
Model for the synthesis of Pt monolayer catalysts on non-noble metal-noble metal coreshell nanoparticles

- Induced strain on the monolayer from a proper shell more active Pt monolayer
- Use of non-noble core and noble shell, cheaper
- Fractional amount of Pt and another noble metal gives higher activity than current carbon-supported Pt electrocatalysts

Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters

- Dissolution/loss of active surface of Pt Cathode is quick due to cycling potentials
- Au Galvanic replacement of Cu monolayer (UPD) on Pt surface.
- Au clusters stabilize Pt metal surface under highly oxidizing conditions and suppress Pt dissolution during ORR/potential cycling without decreasing its activity/kinetics
- 30 40% coverage of Pt by Au

• Stabilization due to d-orbital coupling with Au – thus lower energy state


Table 1. A comparison of surface area and the catalytic activity data for Pt/C and Au/Pt/C before and after 30,000 potential cycles from 0.6 to 1.1 V under the oxidizing conditions of the O_2 reduction reaction. Data were obtained from Fig. 3.

	Catalyst and kinetic data	Pt dispersion (m²/g _{Pt})	Half-wave potential at 1600 rpm (V)		-	Specific kinetic current density at 0.85 V (A/m ² _{Pt})
Pt only	Pt/C initial	65.5	0.841	4.56	~	5.80
	Pt/C after	35.5	0.802	1.60	←Not stable 3.72	
	30,000 cycles					
Pt on Au	Au/Pt/C initial	63.1	0.838	4.23	\leftarrow	5.64
	Au/Pt/C after	60.6	0.833	4.10	🔶 Sta	 Stable ! ^{5.69}
	30,000 cycles					

Zhang, J. Sasaki, K, Sutter, E., Adzic, R. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science¹⁵ (2007) 315, 220.

Experimental Validation

- Despite 1/3 coverage of Pt by Au, ORR activity is unchanged
 - Au oxygen activation
 - Au CO oxidation
- Shaded region is lost Pt Area ٠
- Loss in half-wave potential /activity ٠

Pt on Au

Concluding Remarks on Fuel Cells

- Electrode catalysis is still the most pressing fuel cell problem
- UPD and GR are being used to minimize noble metal deposition to a mono or submonolayer
- Even so the best catalyst, Pt, remains too expensive
 - Pt is such a cost-inefficient catalyst that most research seems to be direct towards its alternatives.
- US DoE sought a conversion efficiency goal of 75% for H₂ O₂ fuel cell by 2010 …
 - 0.9225 V cell voltage (75% efficiency) under load was close with optimized electrodes using Pt deposited by UPD/ GR methods

References

- 1. S.R. Brankovic, J.X. Wang, R.R. Adzic, Metal monolayer deposition by replacement of metal adlayers on electrode surfaces, Surface Science Letters, 474 (2001) 173-179
- 2. V. Sudha M.V. Sangaranarayanan, Underpotential deposition of metals- Progress and prospects in modelling, J. Chem. Sci, Vol 117, No. 3, May 2005 207-218
- 3. R. R. Azdic, Metal Monolayers in Electrocatalysis: From UPD to Pt. Monolayer Fuel Cell Electrocatalysts
- 4. P.J. Hyde, S. Srinivasan, Catalyst Stability in Fuel-Cell Electrodes, Los Alamos Science, Summer 1982
- 5. N. Markovic, P.N. Ross, Effect of Anions on the Underpotential Deposition of Cu on Pt(111) and Pt(100) Surfaces, Langmuir 1993, 9, 580-590
- 6. R. Azdic, K. Sasaki, T. Huang, et al IV.C.3 low platinum loading catalysts for fuel cells, DOE hydrogen program FY2004 progress report
- 7. M.A. Electrolytic metal deposition onto chemically modified electrodes, Appl. Phys. A 69, 537-551 1999
- 8. J. Zhang, M. Vukmirovic, Y. Xu, M. Mavrikakis, R.Adzic, Controlling the catalytic activity of platinum monolayer electrocatalysts for oxygen reduction with different substrates, Angewandte chemie, Int. ed 2005 2132-2135
- 9. Platinum Nanofilm Formation by EC-ALE via redox replacement of UPD copper: Y.Kim, J. Kim, D.Vairavapandian, J. Stickney, J. Phys. Chem. B 2006 110 17998-18006
- 10. E.Herrero, L.Buller, H. Abruna, Underpotential Deposition at single crystal surfaces of Au, Pt, Ag and other materials, Chem Rev. 2001, 101 1897-1930
- 11. A. Krause, M, Uhlemeann, A. Gebert, L.Schultz, Underpotential Deposition fo Cobalt on Au (111) Electrodes, preprint 2004
- 12. A. Montes-Rojas, E. Chainet, Electromicrogravimmetric study of the effect of Cl- anions on thallium UPD onto Gold, J. Mex. Chem. Soc. 2005, 49(4), 336-243
- 13. U. A. Paulus, Electrocatalysis for Polymer Electrolyte Fuel Cells: Metal Alloys and Model Systems, Disertation, Swiss Federal Institute of Technology, 2002

Extra Slide