Plasma Processing for Integrated Circuits

Plasma processing for integrated circuits Outline

- Introduction to semiconductor processing –chips-
- Definition of a glow discharge --plasma-
- Plasma Etch Chemistry the magic in the process-
- Atomic Layer Etch -(neutral beam plasma etching)-

Moore's Law

Intel's 22nm chip First IC, 1958 at TI in in in in n Moore's law (1)= Double the number of devices every 2 years 22 nm SRAM, Sept. '09 •>2.9 billion transistors/die 1. DIGITAL Miniaturization is most effective implementation strategy

How small is small

Older Generation chip

- N+

Newer Generation chips

The loop of Wafer fabrication

Inside a 300mm wafer fab

http://www.youtube.com/watch?v=yaASEMAMCNM

STARTING from the Beginning......

- The Silicon Cylinder is Known as an Ingot
- Typical Ingot is About 1 or 2 Meters in Length
- Can be Sliced into Hundreds of Smaller Circular Pieces Called Wafers

Selective layer removal and anisotropy are keys to microfabrication

Two Kinds of Etching or Removal methods

Wet Etching

- by Wet chemical solution
- Isotropic etching

Dry Etching

- by Plasma
- Anisotropic etching

Vertical E/R ≒ Horizontal E/R Pure Chemical Reaction High Selectivity CD Loss or Gain Vertical E/R >> Horizontal E/R Ion assisted Relatively low Selectivity No CD bias

Plasma processing for DRY etching of integrated circuits Outline

- Introduction to semiconductor processing –chips-
- Definition of a glow discharge --plasma-
- Plasma Etch Chemistry -the magic in the process-
- Atomic Layer Etch (neutral beam plasma etching)

Plasma processing?

 \rightarrow Plasmas can deliver a high, diverse but selective, reactivity to a surface without heat, and can therefore access a parameter space in materials processing, which is not easily accessible with strictly chemical methods

What is a Plasma?

→ ionized gas consisting of atoms, electrons, ions, molecules, molecular fragments, and electronically excited species (*informal definition*)

Plasma – The fourth state of matter

Energy/Temperature

lons

Molecular fragment (high energy)

http://www.plasmatreat.com/plasmatechnology/what-is-plasma.html

- The reactive species are created in the plasma independently of substrate
- The reactivity of the plasma can be tuned by carefully choosing the plasma operating conditions (gases, flows, power, pressure, etc.)
- Plasma contains 'Electrical' Particles (ions, electrons,...) and highly reactive gas species... Through ion bombardment, additional energy can be provided to a surface
- It emits light \rightarrow glow (O₂-pale yellow, N₂-pink, CF₄-blue, SF6-white blue, Ar-red, ...)

Properties of Cold ("Our") Plasmas

- Pressure: 10⁻⁴ 10 Torr (1Torr ≈ 3X10¹⁶ molecules/cm³)
- Electron (ion) density: 10⁹ 10¹² cm⁻³
- Electron energy (temperature): 1 10eV (≈10⁴ 10⁵ K)
- Ion (and neutral) temperature: ≈ 400K

Degree of ionization = $\frac{Charged Particles}{Neutral Particles} \approx 10^{-6} - 10^{-1}$

Densities of plasma species in an O₂ plasma

Pressure	O ₂	0	O_2^*	O *	O_2^+	O^+	0-	ne
(mTorr)	(cm ⁻³)	(cm^{-3})	(cm^{-3})	(cm^{-3})	(cm ⁻³)	(cm ⁻³)	(cm^{-3})	(cm^{-3})
10	3×10^{14}	7×10^{13}	4×10^{13}	4×10^{12}	5×10 ¹⁰	4×10^{10}	2×10 ¹⁰	7×10^{10}
100	3×10^{15}	1×10^{14}	3×10^{14}	5×10 ¹⁰	4×10^{10}	1×10^{9}	3×10 ¹⁰	2×10^{10}

Q & A

• Why does one need a vacuum chamber to generate a stable plasma?

- At atmospheric pressure (760 Torr), MFP of an electron is very short. Electrons are hard to get enough energy to ionize gases molecules.
- Extremely strong electric field can create plasma in the form of arcing (lightening) instead of steady state glow discharge.

Vacuum (units)

Collisions and Mean Free Path

Rigorous Hard Sphere Collisions: $\lambda = kT / \sqrt{2} \pi d^2 P$

 $\sigma_{Ar} = 2.6 \times 10^{-15} cm^2 \rightarrow \lambda_{Ar}(cm) \sim 8 / P(mTorr)$

MFP Illustration

- Effect of pressure $\lambda \propto \frac{1}{p}$
- Lower pressure, longer MFP

Movement of Charged Particle

• Electron is much lighter than ion

$$m_e << m_i$$

$$m_e: m_{Hydrogen} = 1:1836$$

• Electric forces on electrons and ions are the same

$$F = qE$$

• Electron has much higher acceleration

$$a = F/m$$

How is a Plasma produced?

Gas breakdown by Avalanche Ionization

Plasma Etch Chambers

• Etch prefer lower pressure

- longer MFP, more ion energy and less scattering

Low pressure, long MFP, less ionization collision

- hard to generate and sustain plasma

• Magnets are used to force electron spin and travel longer distance to increase collisions

Basic Plasma Etch Tool

Various Plasma chamber configuration types

Electron and Ion Loss to the Substrate and Walls - the plasma sheath -

DC Glow Discharge

 Free electrons from secondary emission and from ionization are accelerated in the field to continue the above processes, and a steady state self-sustaining discharge is obtained.

Electron Collisions

- Elastic Collisions:
 - $Ar + e \rightarrow Ar + e$
 - Gas heating: energy is coupled from e to the gas
- Excitation Collisions - Ar + $e_{hot} \rightarrow Ar^* + e_{cold}$, Ar^{*} $\rightarrow Ar + hv$ - Responsible for the characteristic plasma "glow" - $E_{electron} > E_{exc}$ (~11.55 eV for argon) hv Excitation Photoemission $A + e \rightarrow A^* + e$ Ionization Collisions: - Ar + e_{hot} \rightarrow Ar⁺ + 2 e_{cold} - electrical energy into producing more *e*-- $E_{electron}$ > E_{iz} (15.76 eV for argon) Positive Ionization $A + e \rightarrow A^+ + 2e$ **Dissociation**: - $O_2 + e_{hot} \rightarrow 2O + e_{cold}$ or $O_2 + e_{hot} \rightarrow O + O^+ + 2e_{cold}$ - Creates reactive chemical species within the plasma - $E_{electron} > E_{diss}$ (5.12 eV for oxygen) Dissociation $M + e \rightarrow 2A^* + e$

Dry Etching Spectrum

Pressure

Low <100 mTorr

100 mTorr

400 mTorr

Physical (Sputtering) Momentum Transfer Directional Etch Possible Poor Selectivity Radiation Damage Possible

Reactive Ion Etching Physical and Chemical Variable Anisotropy Variable Selectivity

Chemical Plasma Etching Fast Isotropic High Selectivity Low radiation Damage

Surface modification (oxidation, nitridation, etc...)

Energy

High Energy

Low Energy

Basic Methods of Plasma Etching

- 1. 'Sputtering' Etching
- 2. 'Chemical' Etching
- 3. Energetic Ion Enhanced Etching
- 4. Protective Ion Enhanced Etching

1. Physical (Sputtering)

The ion energy mechanically ejects substrate material

- Anisotropic
- by Purely Physical Process
- High Directionality
- Low Pressure
 - : long mean free path
- Single Wafer Type
- Low Etch rate

2.Chemical

Thermalized neutral radicals chemically combine with substrate material forming volatile products

- Isotropic
- Purely Chemical Reaction
- High Pressure
- Batch Wafer Type
- Less Electrical Damage

Physical + Chemical: 3.Energetic Ion Enhanced

Ion bombardment enhances or promotes the reaction between an active species and the substrate material

- Damage Enhanced Chemical Reactivity
- Chemical Sputtering
- Chemically Enhanced Physical Sputtering
- Removal of Polymer as a By-product
- Ion Reaction

The ions enhance the chemical etching mechanisms and allow **anisotropic** etching

Example of Ion Enhanced Etching

Ar/XeF₂ Chemistry for etching Silicon

4.Protective Ion Enhanced

An inhibitor film coats the surface forming a protective barrier which excludes the neutral etchant

- Sidewall Passivation
- Stopping lateral attack by neutral radical
- Ion directionality
- Involatile polymer film
- Additive film former

 $(N_2, HBr, BCl_3, CH_3F....)$

Examples of Protective Etching

HCl/O₂/BCl₃ Chemistry

SF₆/ CFCl₃ Chemistry

Example of protective etching

5µm spaces
200µm etch depth
40:1 aspect ratio
2µm/min Si etch rate
>75:1 selectivity to photoresist

Anisotropic etch mechanisms

SURFACE DAMAGE

SURFACE INHIBITOR

Speeds chemical reaction on horizontal surfaces

Slows chemical reaction on vertical surfaces

Plasma processing for integrated circuits Outline

- Introduction to semiconductor processing -- chips-
- Definition of a glow discharge -plasma-
- Plasma Etch Chemistry -the magic in the process-
- Atomic Layer Etch (neutral beam plasma etching)

*Can add reactivity and/or isotropy \rightarrow still need volatile products!

PER1 DD	GROUP 1 H hydrogen	2	Periodic Table of the Elements												GROUP 18 He hdun	PERI 1 RI O D			
2	3 Li Ithian (LIII - LIV7)	4 Be beryllian satz	a white next =	tomic number — gas state at 0 °C emical symbol — bemical sumo —	Fe		ement Gategor kali metals kaline metals	ics actino metal	ids loids etals	Electron	Configuration I	Blocks P	5 B boron [10.40 - 10.40]	6 C carbos	7 N nitrogen (sk.00 - sk.00)		F fueries	Ne Ne	2
3	Na Na sdan	Mg Mg	standard Jower (cloued ec	atomic weight – -sport bounds saable actopes 4	55.85	6	ansition metals nthanoids 7	naiogi noble unkno	gases wen elements 9	10	11	12	13 Al stuninium	14 Si silicon (28.00 - 28.00)	15 P phesphonus 30.07	16 S sulfur (12.05 - 32.04)	All Cl dilorise (35.44 - 35.44]	18 Ar angen angen	3
4	19 K potestikam 35.10	20 Ca calcium 0.00	21 Sc scandium	22 Ti titanium 47.07	23 V vanadium	Cr chronskam 12.00	25 Mn nagameter 35.54	26 Fe	27 CO colbalt stati	28 Ni sideri suo	29 Cu	Zn	Ga gatium strr	32 Ge germanium 72.45	33 As arsenik 74,92	34 Se stenium	35 Br bremine 75.50	305 Kr krypton et.te	4
5	BD relident	38 Sr streetien	39 Y yttriam	40 Zr stronstern 11.22	Nb nicklass	42 Mo notybdenum	43 Tc technetium	44 Ru nuthenium	45 Rh rhodium	46 Pd palladium	A7 Ag	48 Cd cadmium	49 In Indian	Sn sn	SD sb antimoty	52 Te tellerium	53 iedine 114.5	Xe	5
6	55 CS Geslan	56 Ba barlum	57-71 Ienthanoids	72 Hf bafelum	73 Ta tastalum	74 W tangiten	75 Re theatum	76 OS estitute 190.2	77 Ir Hidum	78 Pt platinem	Au entre	80 Hg mercury	81 TI thallium [204.3 - 104.4]	B2 Pb Mad NO2	83 Bi bismuth 201.5	B4 PO polosium (210)	85 At astatine (216)	86 Rn nadee care	6
7	87 Fr trandum (20)	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db debeium (142)	106 Sg seaborgium	107 Bh behrium (194)	108 HS hassham	109 Mt meitnerium (194)	110 DS darmstadtium (171)	III Rg reentgenium	112 Cn copernicium (285)	113 Uut Unantrium (214)	Uuq Buunpaadaan (289)	115 Uup Ununpentium (284)	116 Uuh Ununhextum (292)	117 Uus transeptium	118 Uuo Ununsectium (294)	7
	Natural Occurrer	ne rdial	57 La	58 Ce ortun	59 Pr prawodymium	60 Nd	61 Pm presettium	62 Sm seatur	63 Eu	64 Gd	65 Tb tebus	66 Dy Argensian	67 Ho	68 Er erbian	69 Tm	70 Yb	71 Lu Intertium		
	from d	Necary Intic	89 Ac actinium	90 Th thorism	91 Pa potactinium	92 U uranium 236.0	(141) 93 Np septanium (131)	94 Pu plotosilum (144)	95 Am americiam (NII)	96 Cm outen (NY)	97 Bk beteliues	98 Cf californium (711)	99 ES eissteinium (257)	100 Fm fermium (217)	101 Md needelevium (218)	102 No nobelium (219)	103 Lr Levendam		

The Halogens

- Halogens form strong bonds with 'electropositive' elements
 - Halides are relatively volatile

85

At

STATIST.

(2)(0)

Fluorine

- Widely used in plasma etch of semiconductors (*due to its high reactivity*)
- One of the most reactive elements
 - Si + CF₄ \rightarrow SiF₄
 - W + CF₄ \rightarrow WF₆
- Wide variety of source gases
 - CF₄
 - CHF₃
 - CH₂F₂
 - CH₃F
 - SF6

Fluorine!

Powerful oxidizer! Causes organic materials/ combustibles/flammables to ignite!

Extremely toxic!

Corrosive!

Causes serious chemical burns

Avoid inhalation!

Avoid skin and eye contact!

Use safety eyewash or safety shower if contact occurs

Fluorine Plasma application

- Shallow (and deep) trench isolation (Si etch)
 - SF₆ plasma
 - Allows PMOS and NMOS on same chip
- Gate sidewall (Poly-Si)
 - $-CH_3F, CF_4$
 - Sidewall is the difference between fast and smoking fast
- Interconnects (SiO₂, SiN)
 - CF₄, CHF₃, C₄F₈
 - Allows path to forms the 'insulation' around the wires...
- TSV and Protective over coat
 - Access to the outside world

2 um

lattice constant

Metal 12

Metal 11

SILICON ETCHING MECHANISM

CF4 is Freon 14 F/C ratio is 4 add electron impact to produce fluorine radicals:

 $CF4 + e => CF3^+ + F + 2 e$ (Dissociative Ionization)

 $CF4 + e \implies CF3 + F + e$ (impact dissociation)

1. F radicals adsorb on silicon surface \rightarrow SiF₄ desorbs 2. CF₃ also adsorbs on surface + F \rightarrow CF₄ desorbs

- Carbon on surface reduces available reactive F
- > React with $F \rightarrow$ volatiles; CF4, etc..
- > React with $F \rightarrow C-F$ polymers (inhibits etching)
- High F/C ratio favors etching

Ion Bombardment at Surfaces

Negatively charged surface

Typical etch optimization experiment

- 1. Choose gasses
- 2. Etch test at different power/bias/pressure
- 3. SEM cross section

NON-optimized etch

Addition of various gasses can influence the reactions and rates

Hydrogen - reduces fluorine concentration by combination to form HF

• CF4 + e \rightarrow CF3 + F + e +Si \rightarrow SiF(4) Lowers etch Si etch rate + H \rightarrow HF ; C/F ratio

Oxygen - Increases fluorine concentration by combining with carbon which would otherwise require fluorine or reacting with CF3 to liberate F

• C + O
$$\rightarrow$$
 CO or CF3 + O \rightarrow COF2 + F \longrightarrow C/F ratio \downarrow
+ F \rightarrow CF(4)-

Argon – Increases plasma density increasing fluorine radical conc. Helium – Carries heat away and helps photoresist survival

Etch Rates vs Added Gas Concentration

Selectivity mechanism for Si vs SiO₂ (and SiN)

Schematic view of fluxes incident on and outgoing from the surface of (a) Si (b) Si_3N_4 and (c) SiO_2 substrates.

<u>Si film</u>, no volatile product between Si and carbon exists \rightarrow <u>thick</u> steady-state fluorocarbon film can develop. (a

(The Si₃N₄ film has a moderate ability to react with carbon, \rightarrow steady-state fluorocarbon film of intermediate thickness results)

<u>SiO₂ film</u>, most carbon is consumed in reactions with oxygen from SiO₂film \rightarrow <u>thin</u> steady-state fluorocarbon film forms allowing more efficient Si-removal by F

Chlorine

- Very reactive element
 - Si + Cl₂ \rightarrow SiCl₄
 - $AI + CI_2 \rightarrow 2AICI_3$
 - <u>Highly selective gas</u>
 - CI does not react with SiO₂
 - Sources for gas
 - $-Cl_2$
 - HCI
 - Application
 - Si and Metals

BREAKTHROUGH - This is to remove native aluminum oxide (Al_2O_3) from the surface of the wafer by reduction in Hydrogen or by Sputtering by bombardment with Argon at high energies or both. Water vapor will scavenge Hydrogen and grow more Al_2O_3 causing non reproducible initiation times.

ALUMINUM ETCHING – because AlF3 is not volatile, a Chlorine based etch is needed to etch aluminum. BCl_3 , CCl_4 , $SiCl_4$ and Cl_2 are all either carcinogenic or highly toxic. As a result the pump oils, machine surfaces and any vapors must be treated carefully. AlCl₃ will deposit on chamber walls. AlCl₃ is hygroscopic and absorbs moisture that desorbed once a plasma is created causing Al_2O_3 breakthrough problems.

Typical AI etch plasma chemistry:

 Cl_2 → Reduces pure Aluminum BCL₃→ etches native Al₂O₃ (or HfO₂) N₂→ Dilutant and carrier gas CHCl₃ (Chloroform) → Helps Anisotropy, reduce photo-resist damage

Bromine

- Br advantage → precision (less reactive / not as spontaneous = slower more selective etch..)
 - HBr + Si → SiBr₄ + H
 - HBr + Ti → TiBr₄ + H
 - Good selectivity to oxides (SiO₂, HfO₂, etc..)
 - Br is 'filet-knife' (vs. 'F-based Axe')
- Major source is HBr
 - Reddish brown liquid
- Handling of HBr
 - Special delivery due to low vapor pressure
 - HBr particles
- Application
 - Metal gate, Si levels

Put it all together

 We would not have Todays 'smart' devices without plasma based etch

Plasma processing for integrated circuits Outline

- Introduction to semiconductor processing –chips-
- Definition of a glow discharge --plasma-
- Plasma Etch Chemistry -the magic in the process-
- Atomic Layer Etch (neutral beam plasma etching)