Three-dimensional numerical modelling of structure formation in the plasma of a dc-driven barrier discharge
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We consider a layered system, which consists of a planar electrode, a gas discharge layer, a high-ohmic semiconductor, and another planar electrode. To the outer electrodes a dc voltage is applied.  The system is short in the forward direction between the electrodes and has wide lateral dimensions. Experiments showed that such a system is able to create different spatial and spatiotemporal structures (stripes, hexagons, spirals, spots, homogeneous oscillations, etc.). This type of barrier discharge was studied experimentally and theoretically, e.g., in [1-8]. 
We present results of three-dimensional (3D) fluid modelling of temporal and spatial pattern formation in this gas discharge – semiconductor system. Model contains continuity equations for electrons and positive ions with particle densities [image: image2.png]
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where the classical Townsend approximation is used for the ionization rates. Electric field is determined from the solution of the Poisson’s equation,
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Here, [image: image9.png]


 is the electric potential, [image: image11.png]


 is the electric field in the gas discharge, [image: image13.png]


 is the elementary charge, and [image: image15.png]


 is the dielectric constant. The vector fields [image: image17.png]
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 are the particle flux densities that
[image: image20.jpg]18 185 19 195



[image: image21.jpg]



Fig. 2: Bifurcation diagrams, current [image: image23.png]


 voltage [image: image25.png]


 vs. total applied voltage [image: image27.png]


, obtained for the 1D system. Conditions are the same as in [4]. Parameters are dimensionless.
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We neglected diffusion fluxes, so that the particle fluxes are described by drift only with mobilities [image: image33.png]
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. Hence the electric current density in the discharge is
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The semiconductor layer of thickness [image: image38.png]


 is assumed to have a homogeneous and field-independent conductivity [image: image40.png]


 and dielectric constant [image: image42.png]


, electric current and field in the semiconductor satisfy the equations
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The ion flux density vanishes on the anode ([image: image45.png]


), so that the boundary condition becomes [image: image47.png][ (r,t)],.q=0
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 at the cathode ([image: image53.png]


) describes the process of secondary electron emission. Boundary conditions for the electric potential are [image: image55.png]o(r,t)|,—o =0
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, where [image: image59.png]


 is the applied voltage.

The time evolution of the surface charge
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on the boundary between the plasma and semiconductor ([image: image62.png]


) is determined from the equation 
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.
On the boundaries in the transversal ([image: image66.png]


 and [image: image68.png]


) directions, we used periodicity conditions [6].
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Fig. 3: Temporal snapshot of [image: image73.png]XZ



 section (of the 3D computational domain) of electron and ion densities (contour lines) in the discharge region, and of the electric field component [image: image75.png]


 (contour lines) in the discharge and semiconductor regions. Conditions are the same as in [6]. Parameters are dimensionless.
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Fig. 4: The same parameters for the same conditions and time step as in Fig. 2 but in the case of [image: image80.png]


 section of the 3D computational domain.
Parameter regime corresponds to a transition between Townsend and glow discharge, as in the experiments [1] and in our previous works [4-6]. The discharge is in nitrogen at 40 mbar, in a gap of 1.4 mm. We used the ion mobility [image: image82.png]3.33




 cm2/(Vs) and electron mobility [image: image84.png]


 cm2/(Vs). The secondary emission coefficient was taken as [image: image86.png]0.08




. The applied voltages [image: image88.png]


 are in the range of 513–570 V. The semiconductor layer consists of 1.5 mm of GaAs with dielectric constant [image: image90.png]


 and conductivity [image: image92.png]2.6 X10° Qcm) !




.

Figure 2, obtained for the condition [1, 4] in the case of 1D model, illustrates a transition of the system from a single period oscillation regime to the irregular chaotic state, through the period-doubling bifurcations cascade. 
Figure 3 contains a temporal snapshot of the particle densities and electric filed in the [image: image94.png]XZ



 section, and Fig. 4 in the transversal [image: image96.png]


 section (”stripe pattern”), for the conditions [1, 6].
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Fig. 5: Comparison of results of the numerical solutions (solid lines) and of the stability analysis (dashed line). Ion density at the computational nodes of the internal border [image: image99.png]


 as a function of time for [image: image101.png]


 and [image: image103.png]000




. Parameters are dimensionless.
Figure 5 show a comparison between the linear stability analysis (about stationary state homogeneous in the transversal direction) and computational results, obtained for the initial conditions of the form 
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Here [image: image106.png]k* = (ki,k3)



 is a wave number of the most unstable mode, [image: image108.png]00 (2)



 is the stationary solution, [image: image110.png]p,(2)



 is the eigenfunction for [image: image112.png]


 developed in [6]. The stability analysis predicts that [image: image114.png]0.0189



 and corresponding eigenvalue is [image: image116.png]A(k*) =0.4615x10"2+0.1191x 1071,




 [6]. Therefore, the period of the temporal oscillations is predicted as [image: image118.png]21 /Im(A)



=528, and the characteristic wavelength [image: image120.png]2n/k* = 166.4



.  Period and growth rate agree sufficiently well. 
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Fig. 1: A cross section of a planar discharge cell: it consist of a metal anode, a gas layer, a high-ohmic cathode, and another metal contact.
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