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More Moore or 

More than Moore? 

 

 



Curve shows 

transistor count on 

integrated circuits 

doubling every  

two years 

http://en.wikipedia.org/wiki/Moore's_law 

32B 

 in 2020 
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NAND flash memory trend allows doubling of components 

manufactured in the same wafer area in less than 18 months.  
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1990s 2000s 2010+ 

PC Internet Smart 

(2011 GSA Forum, Nvidia, 2011 KSIA, Dongbu) 

PC (1990s) → Internet (2000s) → Smart Computing & Connectivity (>2010)  

Technology Trends 
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Industry Trends 

Cloud Computing Growth

26% 
CAGR

Smart Phones

37% 
CAGR

Mobile Computing

19% 
CAGR

• System Drivers: 

• Low and ultra-low power logic with multi-core/multi-modules 

• Dense 3D NVM RAM for Solid-State Disc (SSD) and dense DRAMs (TB) 

• High-level of functional integration (Digital, analog, RF, NVM, DRAM, 

MEMS, low power displays,…) 

• Faster data transfer needs between modules and between chips 

•  Significant gaps – leads to device transitions 
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New materials & device architectures  
Can we continue performance roadmap with litho scaling alone? 

90nm 65nm 45nm 32nm 22nm Node: 

Introduction of High-/MG 

Gate-First Gate-Last 

[Ghani, IEDM 03] [Tyagi, IEDM 05] [Mistry, IEDM 07] [Packan, IEDM 09] 

Introduction of Strained Si 

Tri-Gate 

SiGe S/D 

HK/MG (GL) 

Strained Silicon 

High- / Metal Gate 

Tri-Gate 

2003 2005 2007 2009 2011 

Introduction of New 

Materials 
Introduction of New 

Device Architecture 
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2013: Sub-28nm increasing in market growth 
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www.nytimes.com 

Gate dielectric shown in red 

• Traditional planar 

• Tri-gate  3D 
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22nm Tri-Gate Announcements 

http://semimd.com/blog/2012/04/10/finfets-
hkmg-on-2012-vlsi-symposium-program/ 

*ISSCC 2012, p229-230 

*Mark Bohr, Kaizad Mistry: Intel, April 
25th, press release 
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Issued by: TSMC 

– Sept. 17, 2013 – “TSMC released Innovation 

16FinFET systems-on-chip (SoC) designs…...”  
 

 

  

http://www.tsmc.com/tsmcdotcom/PRListingNewsAction.do?action=detail&ne

wsid=8041&language=E 
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Improving Electrostatics: FinFETs 

Gate 
Gate Si fin 

Conventional Planar FET FinFET (Multi-Gate FET) 

1) Strong immunity to short-channel effects 

- supports smaller Leff at same Ioff 

2) Better performance  

- supports smaller VTH at same Ioff 

3) Low doping 

- supports higher m & improved random dopant fluctuation 
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FinFET/tri-gate scaling challenges  

Rext Limitations 

- No known solution 

for USJ (Xj~5nm) 

Topography 

- Gate etch, CMP 

polish challenges  

Fin Strain Engineering 

- Effective strain transfer 

from fin into channel 

Pitch Scaling 

- 2nd gen scaling 

(beyond 14nm) 

Capacitance 

- Fringe to contact/facet 

- Low-k spacer 

Variability 

- Mitigate Random Dopant 

Fluctuation (RDF) 

Gate Wrap-Around 

- Conformal coverage 

(Vt tuning) 

Fin/Gate Fidelity 

- Patterning & Etch 

Contact Resistance 

- High Rco/Rch ratio 
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Non-Si (High-m) Channel Materials 

Si Ge GaAs InAs InP InSb 

Electron mobility 

(cm2/Vs) 
1600 3900 9200 40000 5400 77000 

Electron effective 

mass (/mo) 

mt : 0.19 

ml : 0.916 

mt : 0.082 

ml : 1.467 
0.067 0.023 0.082 0.014 

Hole mobility 

(cm2/Vs) 
430 1900 400 500 200 850 

Electron effective 

mass (/mo) 

mHH : 0.49 

mLH : 0.16 

mHH : 0.28 

mLH : 0.044 

mHH : 0.45 

mLH : 0.082 

mHH : 0.57 

mLH : 0.35 

mHH : 0.45 

mLH : 0.12 

mHH : 0.44 

mLH : 0.016 

Band gap (eV) 1.12 0.66 1.42 0.36 1.34 0.17 

Permittivity 11.8 16 12 14.8 12.6 17 

• InGaAs : High electron mobility (light effective mass)  nMOSFET 

• Ge : High hole mobility (light effective mass)  pMOSFET 

• Band gap, permittivity & density of state ; negative effects 
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III-V: Lab to Fab 
Module Development 

III-V on Si 
Thin buffer?, XOI? 

Large wafers ? 1.3 um buffer 

Au-free 

Contacts: 
Thermal stability?,  

alignment?  cleans… 

Scaled Gate 

Stacks: 
Surface passivation?,  

Interface layer?, HKMG 

Clustered tools ? 

Defect-free 

Junctions: 
Epi, I/I,  

Plasma, 

Monolayer Doping [MLD] 

Promising epi 

and non-epi 

options  
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Heterointegration of Ge & III-V on Si for SOC 
Three semiconductors on same chip!  

Ge 
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III - V Ge Si 

Si Si Si 

Ge on 300mm Si 

1 um  

Al M1 

W ILD 
TiN Gate 

mesa 

SEM 

decoration 

etch 

InGaAs III-V on 200mm  

Si from standard 

VLSI fab 

Improved uniformity/quality 

of III-V devices on 200mm Si 
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3D means different things to 

different people … 

3D devices, 

Fin-FET,  

nano-wires, 

memory cell 

stacking 

Si

SiN HM

TiN

HfO2

BOX

a-Si

NiSi

Non-TSV 3D 

packaging, package on 

package (PoP),  

through package via 

(TPV) 

Source: Samsung

3D packaging with TSV 

3D silicon integration 

K Saraswat Stanford U. 
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Power Management  
The end of "traditional" scaling is near: 

(P. Packan (Intel), 2007 IEDM Short Course) (B. Meyerson et al., , IBM, Semico Conf., 2004) 

• Passive power has shown continuous increase due to VDD scaling limit. 

• VCC scaling limited by VT and subthreshold slope (which is kT/q limited) 
 

But Performance enhancement greatly 

increases power consumption. 

  need “green” devices not governed by kT/q ~ 60mV/dec limit.    
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4th Gen SiGe 

Logic Device Roadmap  

HKMG 

FinFET 

45nm 32nm 22nm 

HKMG 

3rd Gen SiGe 

HKMG 

SiGe Strain 

Planar 

High Volume Manufacturing 

14nm 

Si/Ge FinFETs  

QW finFETS 

11nm 

High-m channel 

III-V/Ge FinFETs 

III-V/Ge on Si 

8nm <6nm 

Nanowire FETs 

Low Ion 

Strain 

tFETs 

3D Architecture 

III-V Devices on Si 

Metal Gate / High-k 

Device Architecture 

New Materials 

Process Margin 

RDF & Variability 

Power vs performance 

Circuit operation 

Noise 

Reliability 

Vdd~1V 

Vdd~0.25V 

3D and Power Scaling is key  
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• High Mobility materials 

• SiGe, Ge, InGaAs 

• Graphene [me ~15000 cm2/V-s at RT] 

 

• Better electrostatic control 

• Multiple gates + more channel area 

• FinFETs, nanowire FET 

 

• Improve on-off ratio  

• Tunnel FET 

• Very steep ΔSS << 60 mV/dec 

• Low bias voltages (<< 1V)  

• Nano Electro Mechanical switch (NEMS) 

• Hybrid: Ion by CMOS + Ioff by NEMS 

• Zero off-state leakage, Low Power 

1 2 
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Gate Voltage 

On state current 

Maximize for performance 

Off-state current 

Minimize for power 

Power Performance Trade-offs 
Beyond CMOS Opportunities  CMOS+ 
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Beyond CMOS 
Materials/Structures 
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Logic and Memory Technology Scaling 
Materials and novel structures driven 
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Technology Trends: New Drivers 

Compute – MPU, GPU 

Store – NAND, DRAM, NOR, SRAM 

Communicate – WiFi, 3G/4G, BlueTooth 

Sense – Orientation, GPS, Touch, … 

Interface – HD, Touch, Voice commands, Camera 

High Level of Functional Integration  

Where-ever, When-ever, What-ever 

Display 

Compute 

Communicate 

Store 

Sense 
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Technology Trends: New Drivers 

System-on-a-Chip (SOC) 
• Enables low power, low form factor solutions 

• Minimal performance compromise 

• Integrate MPU/GPU with analog, RF, NV memory 

• High performance 

System-in-a-Package (SIP) 
• Enables low power, low form factor solutions 

• Minimal performance compromise 

• Integrate MPU/GPU with analog, RF, NV memory 

• High bandwidth 

Source: Intel 

Source: Micron 
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Key Enabler: 3 Dimensional Integration (3DI) 

Logic 

M/NEMS 

RF 

Bumps 

Memory 

Analog 

PCB 

TSV 

• Transitioning into 3D technology will enable the 

continued proliferation of electronics into diverse 

domains.  

• Further development is needed to meet the challenges 

of this transition;  
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3D Stacking 

Enables system-level scaling of performance 

5x50 µm die-to-wafer TSV chain 

(carrier wafer removed from top) 

Frontside metal 

Cu-Cu bonded die 
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System on Chip Building Blocks – Adjacent Space 
Eg: III-V introduction at 11nm node  photonics opportunity 

Image courtesy: Intel  

CMOS 

N+P+ P+

Si waveguide

Ge PD

N+P+ P+

Si waveguide

Ge PD
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Vision of Future 

Source: Bryan Christie Designs 

• Self-powered system in your pocket! 

• Use best suited material/device based on functional need 
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Summary  

• CMOS or Beyond CMOS is NOT the question 

• Sense, compute, store, transmit: Integrated functionality 

• Convergence of technologies is the future 

•System level power reduction with performance gain is key 

• Functional diversity vs device density 

•Focus of miniaturization shifts to adding diverse components 

•CMOS+ : Hybrid integration of beyond-CMOS with CMOS 

•Challenge: How can we fabricate them and make them work seamlessly 

•All systems are driven by mobile needs 

• Logic and memory are 3D for density, performance/watt 

• 3D Interconnects is a game changer 

• Rich opportunity space for industry growth 

•Need for strong collaborative models to reduce risk and cost 
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